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LINEAR GEOMETRY 

We consider first the electrostatic problem of a rectangular beam in a 

straight rectangular box (cgs, esu). 

Green's Function, 

for line charge     p«(x - x^ ö(y - y-j) at Xp y-j: 

y > y 
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By integration over x1 from w - hx to w + hx, and by integration over 

y1 from -h to y using V> and from y to h using V , the potential 

function within the (uniform) beam becomes 

V = 
64 p w2 V    1 

ir i_ ,   n 
y\ 

1 - 
Cosh 

nir (h- 

2w 

h ) 
Cosh niry 

2w 

Cosh nirh 
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nirh 
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nir . wherein it will be recognized that sin — is equal to 

0 -1 0 +1  etc, 

for n =  1 5  etc. 

As a check, we note that 

V2V = -16 p V I   sin ^   sin 
nirh 

2w 
X      .„   nirX sin 

2w 

-4TTP    for w-h<x<w+h 

0      for 0 < x < w - h    and for w + h    < x < 2w. 
A X 

In particular, if h   = w, 

V^V = -16 [s1n£+Ts1 n 3 or: + r sin 5 Ö-   + ... 2w     5 2w 

= -16 p j = -4TTP (for 0 < x < 2w).        [cf. B.O.  Pierce, Eq. 808.] 

If we form 
3(-^) 

ay 

we obtain 

16 I* 
Cosh 

y=0 

nir(h - hy) 

2w 

Cosh nirh 

nirh 
sin -f sin -^ x       •„ nirx sin -— 

2w (1) 
n —..   2w 

When self magnetic forces are also taken into account in this straight-pipe 

situation, correspondingly the gradient of effective field becomes multiplied 

by the factor 1 - ß , where s = v/c. 



TOROIDAL GEOMETRY 

We next consider the corresponding problem in toroidal geometry. 

w = 
b-a 

R = b+a 
2 

n = w _ 

R 

b-a 
b+a 

This toroidal case has been analysed by Dr.  Lloyd Smith.    For the 

electrostatic problem we now employ, in our present notation, radial functions 

o o L o    n '    on'        on'    o   n  'J 

= a. 

where the kn, or z
0(n) = kp R, are such as to make F (n;r) vanish for r = b and 

o    is an arbitrarily selected factor (e_.£., a   = 1). 

The Green's function then may be written: 

y > y]: 
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y < yy 
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Integration over the location r^ y^ of the source involves first the 

following 
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Followed by an integration over r,   (from R - h    to R + h  ). 



For this latter integration we follow the suggestion of Dr. Smith in that we 
—    IT 

take p(r, ) = p —— , whereupon we obtain 

V = 4TTP R I 
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Finally, then — for this toroidal electrostatic problem — if we form 

8(-;y/»r> I , we obtain 
ay y = o 
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Correspondingly, for the magnetic problem, we obtain a similar result — save 

that 

(i)  a function F]_ is employed, in which the Bessel functions are of 
order 1, 

(ii) the zeros are the quantities zj(n) for which Fi(n;b) = 0, 

and 

(iii) a factor -ß2 is to be appended for the contribution to the force 
gradient: 
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These terms [(2a) and (2b)] combined give the expression proposed by 

Dr. Smith, if we identify our pR with his eP R. 
o 

In the work that follows, we shall  identify 
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Following what we believe to have been the suggestion of Dr. Smith, we have 

undertaken to evaluate the integrals  (and the subsequent sums)that appear in 

the above expressions numerically.* 

XL. 

*4—order integration by use of the extended Simpson's Rule (Abramovitz and 
Stegun, §25.4.6) 



We remark that TERM 1 and TERM 2 will be rather close to one another 

numerically — and indeed, when w/R << 1, will each be rather close* to the 

quantity 

Mb - h) 
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if we identify x = r - (R - w) 

= r - a 



—thus providing agreement, in this limit, with expression  (4). Note that 

terms for which n is even will be expected to be small [since the factor 

sin n TT/2 in the above approximation vanishes for n even].    Also, moreover, 

if h    = wand x = w(r = R), this approximation suggests that 

TERM 1 « TERM 2 s - 

»(h. - h )                       3,(h - h ) 5,(h - h  ) 
c°sh       %, *            1 c°sh        2w   " ... 1 Cosh         2w   y 

irJT                         T                    3irh 5 5irh 
Cosh -£                            Cosh -jS- Cosh-^ 

Such approximate behavior has proven of use in checking some aspects of 

operation of the computer program CPRTS. 

COMMENT: 

We recall that for a straight beam pipe the electric and magnetic self 

forces are expected virtually to cancel, through the action of the 

I 2 factor -W = 1 - 8    . 
Y 

In the toroidal geometry, on the other hand, the electric and magnetic 

2 
forces may differ slightly in magnitude even in the limit e > 1. 

To compare the relative sizes of such effects, it may be helpful, 

therefore, to think of a quantity analogous to —U- that we form from the 
Y 

toroidal  solutions as 

TERM 1 - TERM 2 

— i.e., 

Avg. of TERM 1 and TERM 2 

2      . (TERM 1 - TERM 2) 
TERM 1 + TERM 2 



THE PROGRAM 

The program CPRTS  (Library LASLETT) first computes the first 100 "zeros" 

[zQ(n) and z-j(n) of FQ(n,b) and F-j(n,b)]  by successive application 

of Newton's method — employing in this connection the Sub-routine 

(Mrs.  Barbara (Harold)  Levine)  LJBJY for Bessel  functions and (optionally) 

st their 1—derivatives.    (The chamber radii, a and b, are entered for this 

purpose.)    Optionally printed, in tabular form, are the z  (n) and then the 

z-j(n), each accompanied by the value to which F   or F, has thereby 

been reduced to virtually zero. 

Next, with h    entered, the program then computes  (and prints) 

/ FQ(n;r1)dr1 / F](n;r1)dr1 

R-h R-hx 
RHOtf =        .   *    RH01 = —  X 

/        r'[F0(n;r')]  2dr' /     r'[FT(n;r' )]2dr' 

a a 

[Integration steps are taken to be inversely proportional  to n.] 

Actually the numerators and denominators of each of these quotients are 

calculated in two ways:    First, directly;  second by subtracting some simple 

form from the integrand and then supplementing the integral of the result by 

the analytic integral of the simple form that had been subtracted.    The 

ratios (RHO0 and RH01) computed by the "direct" and by the "difference" 

procedure are each printed.    One then has the option of selecting whether 

one will retain for future use results  (quotients) obtained by the direct or 

by the difference procedure and such values are then printed, once again, as 

a summary.    [For a given number of integration steps the results obtained by 

the difference procedure are believed to be somewhat more accurate.] 



By entering hc, hy) and the field-point radius  (rß), the program 

is then in a position to compute the successive terms  (n = 1,  2, 3,  ...) and 

to print the successive cumulative sums of the expressions TERM 1 and TERM 2. 

Upon the completion of such a tabulation, the program can be directed to 

accept entries of new values of hc, h , and rß — or alternatively to 

return to earlier stages of the program. 

RESULTS 

Results for several different parameters (including rD) are summarized 
D 

in Tables that follow. 
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a = 990.00 b = 1010.00 

hc = 5.00 

w = 10.00 

hx = 9.90 

h 
y 

= 4.50 

1000.00 

TERM 1 

0.89152 8556 

TERM 2 

0.89151  9000 

TERM 1 - TERM 2 
AVERAGE 

1.0719 x 10 -5 

11 
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a = 87.50 b = 112.50 w    = 12.50 

hc = 10.00 

h    =   8.40 
A 

h    =    2.00 

rB TERM 1 TERM 2 TERM 1 - TERM 2 
AVERAGE 

92.80 0.65204 9938 0.65143 3302 '    9.46136 x 10"4 

95.20 0.82374 9845 0.82296 2369 9.56422 x 10"4 

97.60 0.86558 6391 0.86472 6339 9.94100 x 10~4 

100.00 0.86185 8622 0.86100 3476 9.92704 x 10"4 

102.40        1 0.82865 0396 0.82786 4456 9.48908 x 10"4 

104.80 0.75552 2275 0.75486 2845 8.73183 x 10"4 

107.20        | 0.57508 3712 
1 

0.57460 6194 8.30690 x 10"4 

13 
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a = 187.50 b = 212.50 

hc = 10.00 

w    = 

hx = 
h.. = 

12.50 

12.46 

2.00 

rB TERM 1 TERM 2 TERM 1 - TERM 2 
AVERAGE 

189.32 0.49962 2554 0.49954 6695 1.51844 x 10"4 

192.88 0.81219 1130 0.81201 3801 2.18358 x 10"4 

196.44 0.88358 9404 0.88336 2741 2.56558 x 10"4 

200.00 0.88990 1674 0.88966 5564 2.65357 x 10"4 

203.56 0.85477 4512 0.85456 3070 2.47396 x 10~4 

207.12 0.76014 5318 0.75999 0786 2.03313 x 10"4 

210.68 |       0.45297  1393 0.45290 9272 1.37151  x 10"4 

a = 187.50 b = 212.50 

hc = 10.00 

w    = 12.50 (as above) 
h    =    8.40 

A 

hv =   2.00 (as above) 

rB TERM 1 TERM 2 TERM  1 - TERM  2 
AVERAGE 

192.80 0.63065  1758 0.63050 8072 2.27863 x 10"4 

195.20 0.80521 8479 0.80503 1029 2.32821 x 10~4 

197.60 0.85568 1330 0.85547  1844 2.44848 x 10"4 

200.00 0.86149 2848 0.86127 9728 2.47415 x 10"4 

202.40 0.83723 5836 0.83703 5575 2.39222 x 10~4 

204.80 0.77118 1650 0.77101  0104 2.22470 x 10"4 

207.20 0.59231 7299 0.59219 0831 1.13537 x 10~4 

15 



Z»V=U- HM2IJJ. 
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a = 387.50 b = 412.50 

hc = 10.00 

w = 12.50 

hx = 8.40 

hy 
= 2.00 

rB TERM 1 TERM 2 TERM 1 - TERM 2 
AVERAGE 

392.80 0.62054 1001 0.62050 6263 5.5982 x 10~5 

395.20 0.79634 6686 0.79630 0904 5.7492 x 10"5 

397.60 0.85090 4066 0.85085 2326 2.0808 x 10"5 

400.00 0.86140 1722 0.86134 8483 6.1807 x 10"5 

402.40 0.84168 4122 0.84163 3534 6.0104 x 10"5 

404.80 0.77933 7854 0.77929 4057 5.6199 x 10"5 

407.20 0.60139 2252 
: 

0.60135 9661 5.4194 x 10"5 
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